SECOND-ORDER DIFFERENTIAL EQUATIONS II

In the last lecture, we showed on second-order linear differential equations
with constants coeflicients can be solved. Now that you understand the
intuitive ideas behind such ODEs, it’s time to go back and clean up the theory.
We'll begin with introducing a shorthand. The second-order linear operator,
Z, is a map of functions, with

Lyl =y" + P(x)y + Q(x)y, (4.1)

where the coefficients, P(z) and Q(z) are continuous on some interval, x €
7. Because the linearity of differentiation, then this operator is linear, with

ZLlayr + Bya] = aZLy1] + BL 2],

for « and 3 € R, and functions y; and ys. Thus, .Z is a linear transformation
on a suitable vector space of differentiable functions. We now definite the
homogeneous problem, 7, and the inhomogeneous problem, .4, with

€  (homogeneous) : Z[y] = 0, (4.2)
A" (inhomogeneous) : Z[y| = R(z), (4.3)

where R is a given function. Note that

Property 4.1 (Vector space of homogeneous solutions). The homogeneous solu-
tions of F€ form a vector space.

Proof. Most of the required properties of a vector space are easily shown.
Notice that the zero, y = 0 is a solution of ¢, and also that if y; and yo
are solutions, then ay; + By is a solution, for o, 5 € R. O

In the following, we will often use .7 to correspond to both the homogeneous
problem and also the vector space of solutions which correspond to the
homogeneous problem.

4.1 LINEAR INDEPENDENCE AND THE WRONSKIAN

Property 4.1 assures us that, given any two solutions, y; and y2, we can
construct more solutions by forming linear combinations. Of course, the
natural question to ask is whether these linear combinations span the solution
set, that is, whether any arbitrary solution, y(x), can be represented as a linear
combination of y; and yo. For this, we will need to return to the concept of
linear independence.

Definition 4.1 (Linear independence). Tbe set, S = {f, g}, is linearly depen-
dent on v € S = [a,b] if and only if there are real constants, c¢i and cy, not all
zero, such that

c1y1 + cay2 = 0, (4.4)
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forall x € 7. Note that in the following, we will sometimes omit the statement
that x € I, when writing (4.4).

Let us now review some additional facts about solving matrix equations.
Consider the 2 x 2 system

<CL11 CL12> <$1> — Ax=0
a1 a22 Z2

Remember from your linear algebra that this equation has a non-trivial

solution if and only if |A| # 0.

Definition 4.2 (Wronskian). If f and g are differentiable functions on & =
la, b], the Wronskian, W (f, g)(x), of f and g is defined by

g

W(f g)(x)= ¥y =fqd —gf"

'The Wronskian will be particularly important to the idea of solutions of JZ,
and in fact, it will turn out that given two solutions, either W is identically
zero in & or W is never zero in .Z.

Theorem 4.1 (Linear independence of differentiable functions). If f and g are
differentiable and linearly dependent functions on .9 = [a, b], then the Wronskian,
W (f,qg) is identically zero on I .

Proof. By linear dependence, we have
le + c2g = 0,

for some c; and ¢z, not both zero. With this in mind, assuming that the
functions are differentiable, we form the two equations

af+eg _ <f g> <01> —0

lel + 629/ f/ gl o :
By assumption, ¢; and ¢y are not both zero, thus, by our knowledge of linear
algebra, the determinant of the matrix is zero. Thus W (f, g)(z) = 0 for all

r e g, O

Example 4.1. Does the converse of the theorem hold? That is, if W = 0
forall x € I, are f and g linearly dependent?

4.2 LINEAR INDEPENDENCE FOR SECOND-ORDER LINEAR ODES

'There is a slight problem with what we will now present, and this relates to
the following theorem, which we hinted in the previous lecture:
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Theorem 4.2 (Existence and Uniqueness). Consider the initial value problem

y'+ P(x)y + Q(x)y = R(x), forz >z (4.5)
y(wo) =yo and y'(x0) = yo, (4.6)

where P, Q), and R are continuous on the open interval, x € 1. Then there is

exactly one solution to the IVE and moreover, this solution exists in the interval I.

Essentially, we will need to make use of this theorem (which is proven in next
week’s lectures). I've reversed the order of presentation because I think it’s best
to give a more concrete overview of differential equations, before having to
deal with existence and uniqueness results. The alternative is to present the
heavy theory before you have had some experience with solving ODEs; while
this is more mathematically elegant, it’s also perhaps more difficult.

Theorem 4.3 (Abel's Theorem). Lez yy and ya be solutions of the homogeneous
equation

Ly =y" +py +qy=0,

where p and q are continuous on 1. The Wronskian is then given by
x
W = const X exp [—/ p(t) dt] .
Thus, W is either zero or always non-zero for v € I.

Proof. Difterentiate the Wronskian,
W' = y1ys — y2u-
Since y; and yo satisfy
y" +pla)y +qlx)y =0,
then substituting the values of the second derivatives into W' gives
W' = —p(z) {ylyé - y2yﬂ = —pW.

This is a separable ODE, which we can simply solve to give the result. Because
the exponential term is strictly positive, then either W = 0 forall z € I (i.e.
¢ =0), or W is always non-zero. ]

We have the last all-important theorem:
Theorem 4.4. If'S = {y1, ya} is a solution set of 7. Then y1 and ya are linearly
dependent on I if and only if W (y1,y2)(x) = 0 for all x € I. Alternatively,

y1 and yy are linearly independent if and only if W (y1,y2)(x) is never zero in
the interval.

27



Proof: If y; and ys are linearly dependent then by Theorem 4.1, the Wron-
skian is zero for all z. It remains to prove the reverse direction. We first let
be a point such that the Wronskian is non-zero. Then we have the fact that
the determinant of the matrix in the equation,

(yl (wo) y2($o)> <C1> B

/ / Y

Y1 (zo)  y3(zo) C2

is equal to zero. Thus, there exists non-trivial solutions, ¢; = C1, and ¢z = Cs,
not both zero. Consider now the function

d(x) = Criy1 + Cayo.

Clearly, ¢(z9) = 0 and ¢/(z9) = 0 under our choice of C; and Cs. Now
return to the ODE problem, .77. One possible solution which satisfies the
same conditions at xq is simply the trivial solution, with ¢ = Oonz € #.
However, by Theorem 4.2, this solution must be unique. Thus,

¢ = Ciy1 + Cay2 = 0,

for x € #. Since C and Cy are not both zero, this proves that {y1,y2} is a
linearly dependent set. 0

If we combine what we have discovered thus far, we come to the following
conclusion: if y; and y9 are two solutions of .77, then the following statements
are equivalent:

* {y1,y2} form a basis for the set of solutions of 7.

* {y1,y2} form a linearly independent set

* Wi(yi,y2)(xo) # 0 for some zg € I

* W(y1,y2)(x) #0forallz € T
That is, if we begin with any one of the four statements, then the other three
follow immediately.

4.3 INHOMOGENEOUS EQUATIONS

We now address how to solve the inhomogeneous equation, ZL[y] = f(z),
in (4.3). Our solution method hinges on the following theorem.

Property 4.2 (General solution of the inhomogeneous problem). 7he general
solution of N can be written as

y(r) = |ayi(x) + coya(x) | + yp(z),

where y1 and yo are solutions of F, c1 and co are arbitrary constants, and yp(a;)
is any particular solution of N .

Proof: Let Y and y, be any two solutions of 4. Notice that

LY —ypl = f(x) = f(zx) =0,
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so Y — y, must be a solution of the homogeneous problem, 7. However,
any general solution of .7 can be written,

Y —yp = c1y1 + cayo.

0

In other words, this theorem states that in order to solve the inhomogeneous
equation, we first solve for the general solution of the homogeneous equation,
and then we solve for a particular solution of the inhomogeneous equation.
'The general solution of the inhomogeneous equation is then given by the sum
of the two expressions. The trick, then, is to find a particular solution of the
inhomogeneous equation; this, we will discuss in the next lecture.
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