THE HISTORY OF DIFFERENTIAL EQUATIONS

My brother must be extremely conceited since he believes that I am
incapable of solving the problems he has solved; but if I was in the
mood to do the same to him, I could come up with questions so subtle
and so unusual that he would spend his whole life on them to no avail,
and yet I have solved them very easily.

—JOHN BERNOULLI TO HIS BROTHER, JAMES (PEIFFER, 2006).

I.I INTRODUCTION

'There are many ways we can begin our study of differential equations. We can,
for example, simply define an ordinary differential equation (ODE) of the n®
order according to the form

G(%y,y’,y", y", .. 7y(”)> =0, (1.1)

to be solved for some unknown function y(z). Then we can jump straight into
learning about the available techniques for solving ODEs and their theory.
Do solutions of (1.1) exist and if so, are they unique? Do they oscillate like
sinusoidals, are they polynomial, or do they grow and decay like exponentials?
This is a very mathematical perspective—focus on a unified theory and work
towards the practical.

Alternatively, we can begin from a practical perspective. Beginning from
physical principles (such as Newtons Law), we can derive the relevant
differential equations for modeling a physical problem. A typical goal would
be to derive the equation governing the motion of a pendulum and to solve
it. Any mathematical techniques we require will then be introduced in order
to fit the situation.

In this lecture, we shall start learning about ODEs from a Aistorical
perspective. In this way, we will cover both the development of differential
equations from the physics, and also see how the mathematics emerged in
conjunction. Most of this lecture follows from (Kline, 1990, chap 21).

I.2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Perhaps the first well-documented problem which initiated the study of dif-
ferential equations was the famous tautochrone problem, posed by Huygens
in 1693: what is the curve along which it takes the same amount of time
for a particle moving under the influence of gravity to fall to the bottom,
irrespective of its initial position. (Though Huygens had originally posed the
question in a different context: what is the curve along which a pendulum
must swing so that it performs a complete oscillation in the saze amount of
time, regardless of amplitude).



In 1690, James Bernoulli published what is arguably the first paper on
differential equations in order to solve the tautochrone problem (in addition,
he mentions the word ‘integral’ for the first time in history). The differential
equation he proposed, written in a simplified form was

dy _ [
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for some constant, a. The solution of this ODE produces curves known as
cycloids (or isochrones). Let us take a moment’s pause and solve our first
differential equation!

Example 1.1. We solve the isochrone problem (1.2) by rearranging the

a—y@_l
y dx

We have functions of z on the left and on the right. We thus reason
that, since the functions are equal, their integrals (area under their curves)

equation:

must also be equal:

_ Ja—ydy Ja—y
x—/ " dacdx_/ " dy. (1.3)

'The integral on the right requires making the trigonometric substitution

of y = asin?(6/2), and once substituted, we get
a .
7 = 5(0 +sinf) + C,

for some constant C'. Different values of C' will give different curves, only
shifted in the horizontal direction. We shall set C = 0 to examine the
solution which has y(0) = 0. This gives the cycloid (or isochrone) as
described by a parametric equation

xz%(@—l—sin@) and yz%(l—cos@).

'The method we just used is called separation of variables, and we will go
over the method in more detail in the next lecture.

In the same paper, James Bernouilli posted the problem of finding the curve
assumed by an inelastic cord hung freely between two fixed points (a cazenary).
In 1691, Leibniz, Huygens, and John Bernoulli all published solutions to this
problem. It is given by the differential equation

dy 1 [* -
- = C/O V14 ()2 dt. (1.4)

James and John Bernoulli would go on to solve various other ‘hanging-
cord’ problems in 1691 and 1692, and in 1696, the famous brachistochrone
problem was posed by John:

I, Johann Bernoulli, address the most brilliant mathematicians in

the world. Nothing is more attractive to intelligent people than an



honest, challenging problem, whose possible solution will bestow fame
and remain as a lasting monument. Following the example set by
Pascal, Fermat, etc., I hope to gain the gratitude of the whole scientific
community by placing before the finest mathematicians of our time
a problem which will test their methods and the strength of their
intellect. If someone communicates to me the solution of the proposed

problem, I shall publicly declare him worthy of praise.
'The problem he posed was the following:

Given two points A and B in a vertical plane, what is the curve traced
out by a point acted on only by gravity, which starts at A and reaches
B in the shortest time.

Five mathematicians from four countries would send in solutions: Newton
(England), Jacob Bernoulli (Switzerland), Leibniz and Von Tschirnhaus
(Germany) and de L'Hopital (France). The solution, it turns out, is simply
a particular cycloid (except with particular constants related to the physical
constants).

In the late 1690s, the mathematicians had turned their interest to the
subject of orthogonal trajectories: finding the curve or family of curves
that cut a given family of curves at a right angle. This problem has wide
applicability to problems in physics (e.g. light rays cut through a changing

medium). Here is an example of the problem considered by Liebniz:

Example 1.2. (Orthogonal trajectories) Let 7 be the family of curves
generated by y? = 2bz, where b € R. What is the family, 2, of curves
such that each element of 75 is orthogonal to each element of 77 at an
intersection point?

First, we note that the slope of the curves in F is

dy _b_y

dr  y 2z
Thus, if y(x) denotes those curves in F, we need
dy _ 2
dx v
We shall use the same technique as before (separation of variables) and

integrate both sides of the equation

dy 1
/y:/—2a:da: = -F=-2+C,
dz 2

for some constant C'. Different choices of C' generate different ellipses,
forming the family /5. An example of one of these orthogonal trajecto-
ries is shown in Figure 1.1.

'The next important topic of the early 1700s concerned exact equations and
integrating factors. The principal investigators of these problems were Euler



Figure 1.1: Curves in F are shown solid
and curves in F» are shown dashed. Any
given element of F intersects any curve
in F at a right angle.
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(1734-35) and Clairaut (1739-40). An example of such an equation is

dy

i 0. (1.5)

2z + y* + 2y
There are other subtleties of first-order differential equations we shall not dis-
cuss (one is the nature of singular equations such as y = xy’ + f(y')—known
as Clairaut equations). However, by 1740, all the elementary methods of
solving first-order ODEs had been discovered, and so we will go onwards
to the subject of second-order equations.

I.3 SECOND-ORDER DIFFERENTIAL EQUATION AND SERIES SOLUTIONS

Second-order ODEs had already arisen earlier (for example, James Bernoulli
treated a second-order equation in his modeling of the we/aria, that is, shape
of a sail under the pressure of the wind), but the great majority of work in the
18th century towards the theory was devoted to understanding pendulums
and oscillatory motions.

In introductory physics and engineering classes, you are taught about two
principal systems of mechanical vibrations. The first is a mass-spring-damper
system, where a mass m is connected to a spring with constant & and forced
by F'(t). The spring is additionally damped by ¢ and its displacement, x(t)
tollows 2 p

def + gdif + kz = F(t). (1.6)
The second example is the motion of a pendulum with mass m and length ¢,
with air damping (. The angular displacement, 6(t) is then

2
mﬁd o + Cﬁﬁ + mgsinf = 0. (1.7)

dr? dt

These are both examples of second-order ODEs, and certainly, the work of
the Bernoullis, Euler, Ricatti, and others were all intrinsically tied to similar
equations. However, in actuality, the study of second-order ODEs proceeded
in much ‘messier’ lines than for first-order ODEs, partly due to the fact



that very few elementary solutions exist, except for the simplest classes of
equations.

Consider as an example, the Bessel equation, for which a version had al-
ready been introduced by Daniel Bernoulli in 1733 to describe the oscillations
of a weighted chain set into vibration:
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for constants o and . In order to study these equations, the idea of series
solutions were developed (largely spurred by Euler). Let us go through a quick
example of how series expansions are done.

Example 1.3. Consider the Bessel equation (1.8). We assume that y can
be expanded into a series about z = 0:

y(z) = Az" + Bz™ + ...,

where 0 < n < m (why?). Substitution into the equation gives
n—2 1 n—1
nin —1)Az""“ + .. ] + = [nAx
i
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'The dots represent terms which are smaller around « = 0. If we drop the

smaller terms, we get
nin—1)+n—-F%=0,

which is solved to give n = +/5. Thus, we would say that the solution of
(1.8) behaves like

y(x) = AzP + ... or y(z) = Az=P + ...

I.4 ASTRONOMY AND THE THREE-BODY PROBLEM

One of the great physical motivations towards developing the theory of
differential equations was in order to better understand the motion of two
or more bodies, each moving under the gravitational attraction of the other.

Consider two point unit masses, located at coordinates x; = [x1, Y1, 21]
and xo = [x2, Y2, 22]. If r is the distance between the two masses, then by
Newton’s law, we have

d2X1 . X] — X9 d2X2 . X9 — X1

(1.10)

a3 dt 7
'This gives a system of six second-order equations, which can be solved once we
supply the initial position and velocities of both bodies (yielding twelve initial
conditions). In fact, Daniel Bernoulli had solved this two-body problem in



Date Problem Description Mathematician
1690 Isochrone problem Finding a curve along which a body  James Bernoulli
will fall with uniform vertical velocity
1696 Brachistochrone problem Finding the path down which a partic-  John Bernoulli
ular will fall from one point to another
in the shortest time
1698 Orthogonal trajectories Finding the curve(s) which cuts a fam-  John Bernoulli
ily of curves at right angles
1713-1733  Vibrations of strings Deriving the shape and fundamen-  Brook Taylor,
tal frequencies of a string (possibly  John Bernoulli,
loaded with a distribution of weights) Daniel Bernoulli,
Euler
1739 Harmonic oscillators Modeling the motion of forced pendu-  Euler (et al.)
lums and springs
1743,1750  Linear homogeneous and in-  Finding a unified methodology which  Euler
homogeneous ODEs of n™  can be used to solve the class of equa-
order tions
1764-69 Series solutions (Hypergeo-  Solving differential equations by writ-  Euler
metric ¢ Bessel series) ing the solution as an infinite series
(1734) Two-body problem Predicting the motion of two bodies  Daniel Bernoulli
subjected to mutual gravitational at-
traction
1772 Three-body problem Producing general theorems which  Lagrange
(General theorems) can explain the motion of three bodies
subjected to gravitational attraction
1770s Three-body problem Producing approximations to solu-  Clairaut
(Approximations) tions of the three-body problem Euler
Laplace

Table 1.1: Summary of the history of ODEs

1734, and had shown that the bides move in a conic section with respect to
the common center of mass.

'The problem of n bodies, and most regrettably, for three bodies, cannot
be solved exactly. Thus to make progress, one is required to proceed in two
different ones: the first way is to derive general mathematical results which
can shed light on important properties of (restricted classes) of solutions; this
endeavor was most taken to heart by the work of Lagrange in around 1772.

'The second approach is to derive approximate solutions, and this idea
applied in problems in celestial mechanics led to the birth of what is today
known as ‘perturbation theory’. The idea behind this theory is to introduce
small perturbations to a solution that you already know.

I.5 SUMMARY

As you have seen, part of the difficulty in summarizing a history of differential
equations is that history proceeds in a pedagogically nonlinear fashion. The
subject did not evolve moving from simple ODEs to more difficult ODEs,
but rather, in response to fashionable trends and problems. We will ‘clean-
up’ this treatment beginning in our next lecture when we look at systematic
techniques for solving first-order differential equations.



